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1. 

Determination of the damping properties of structures is an important problem, often
investigated in the search for more satisfactory or accurate solutions. One of the most
popular approaches is based on the addition of modal damping to the model. This method
is used not only for the sake of analytical simplicity, but also because it is the most
favorable way to measure or estimate. This is the way, for example, to estimate the material
damping in finite element analysis of large flexible structures. The resulting damping matrix
in modal co-ordinates is a diagonal one. The structural damping, for which the modal
damping matrix is diagonal, is called classical, or proportional damping. In another
approach a damping matrix proportional either to the mass, or to the stiffness matrix, or
to both, is introduced. This technique produces proportional damping as well.

Some researchers have sought to replace the non-proportional damping with
proportional damping. For example, Cronin [1] used a perturbation technique to
approximate a solution for a non-proportionally damped system with harmonic excitation.
Chung and Lee [2] applied a perturbation of the proportional damping system by the
non-proportional damping matrix to determine the eigensolutions of weakly,
non-proportionally damped systems. Bellos and Inman [3] proposed a simple decoupling
technique that is not limited either by magnitude of damping or separation of the natural
frequencies. The bounds on the response of a non-classically damped system under
harmonic and transient excitation were investigated by Yae and Inman [4] and by
Nicholson [5], respectively. Falszeghy [6] proposed a new orthogonal co-ordinate
transformation that transforms a non-classically damped system into a form in which the
error generated by discarding the off-diagonal terms of the damping matrix is minimized.
However, the simplest and the most common approach to the problem is to replace the
full damping matrix with a diagonal one by neglecting the off-diagonal terms of the
non-proportional damping matrix. Several researchers have studied the error bounds
generated by this simplified approach (see, for example, Shahruz and Ma [7], Shahruz, [8],
Uwadia and Esfandiari [9], Hwang and Ma [10] and Bhaskar [11]). The bounds derived
for the case of arbitrary damping are often too conservative for many practical
applications (e.g., in example 2 of Shahruz [8], the actual maximal error was 4%, while
the bounds spanned the range of 218%). This is the price paid for considering a general
case, in which arbitrary values of damping are allowed. However, there is a considerably

0022–460X/97/090543+08 $25.00/0/sv960682 7 1997 Academic Press Limited



   544

large number of cases in which the damping is rather small, and for these cases the damping
evaluation simplifies significantly.

This letter is primarily concerned with the analysis of a particular but important case
of lightly damped structures. For small damping the resonance peaks are distinctive, and
the modal damping coefficients are much smaller than 1. The case of lightly and
non-proportionally damped systems is quite often encountered by structural and
mechanical engineers who deal with steel structures (Dimarogonas and Haddad [12]),
rotating equipment (Ehrich [13]), space structures (Joshi [14] and Gawronski and Juang
[15]), and large antennas and radar (Gawronski and Mellstrom [16] and Gawronski [17]).
In this case, the less restrictive conditions can be obtained by applying the error analysis
similarly to the Shahruz [8] approach. The observation that a linear system is practically
uncoupled when the natural frequencies are adequately separated was reported by
Hasselman [18], and discussed by Park et al. [19]. Here, the detailed error analysis,
including the dependence of the error on the system parameters, is presented. Also, we
show that the off-diagonal terms rarely cause a significant approximation error when
damping is small. The condition of positive definiteness of the damping matrix sets the
limits on its off-diagonal terms; they are bounded by the geometric average of the
corresponding diagonal terms.

2.     - 

The equations of motion of an n-degree-of-freedom structure are given here in the modal
co-ordinates

q̈+Cq̇+V2q=Bf, (1)

where q is the modal displacement vector, f is the forcing function, B is a column matrix
describing the distribution of applied force in the modal representation, V is a diagonal
matrix of natural frequencies, V=diag (v1, v2, . . . , vn ) where vi is the ith natural
frequency, and C is the matrix of modal damping, which is symmetric and positive definite.

The damping matrix C is a full rather than a diagonal matrix, and it can be decomposed
into the diagonal (Cd ) and off-diagonal (Co ) components

C=Cd +Co . (2)

Note that and cdii = cii and coij = cij , for i$ j. A flexible structure is proportionally damped
if Co =0, and it is non-proportionally (or non-classically) damped for Co $ 0. The
displacement of the non-proportionally damped structure q is a solution of equation (1)
which can be rewritten as

q̈+Cdq̇+Coq̇+V2q=Bf. (3)

The displacement of the proportionally damped structure qp is a solution of equation (1)
for C=Cd , i.e.,

q̈+Cdq̇p +V2qp =Bf. (4)

The matrix Z=diag(ji ) of modal damping factors ji , i=1, 2, . . . , n, is obtained from the
diagonal damping matrix as Z=0·5V−1Cd . The structure is considered to be lightly
damped if the damping factors are small, i.e., if ji�1, for i=1, . . . , n. In further
considerations we assume small damping, namely, that the damping matrix Cd satisfies the
above condition.

Consider the natural frequency vi . We shall show that for a small damping ratio the
kth and ith modal displacements at frequency vi are proportional to each other. Denote
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qpk (vi ) as the kth modal displacement at natural frequency vi . Then kk,i is a scalar
representing the ratio of the ith and kth modal magnitudes at frequency vi , i.e.,

kk,i = =qpk (vi ) =/=qpi (vi ) =. (5)

This scalar can be obtained in a closed form as a function of system parameters. Namely,
from equation (4) one obtains

=qpi (v) == =bi = = f =
z(v2

i −v2)2 +4j2
i v

2
i v

2
, (6)

where bi is the ith row of B. Substituting equation (6) into equation (5) for v=vi and
for v=vk , with the dimensionless variables defined as bk,i = =bk =/=bi =, and vk,i =vk /vi ,
yields

kk,i =
bk,i

jk,izv2
k,i +(v2

k,i −1)2/4j2
k

(7)

The plot of kk,i versus vk,i and jk for jk,i = bk,i =1 is shown in Figure 1. The maximal value
of kk,i is 1 whenever the modal frequencies vk and vi are equal (i.e., for vk,i =1). From
the plots it is clear that kk,i (or modal coupling) remains small for the almost whole domain
of vk,i, except for the small neighborhood of vk,i 2 1 (i.e., when modes are clustered). Also,
for a given value of vk,i, modal coupling is smaller if the damping is light.

3.  

Denote by ei the ith modal error, ei = qi − qpi . Subtracting equation (4) from equation
(3), and introducing the modal factor ji instead of the diagonal term of Cd (i.e., cdi =2jivi ),
one obtains

ëi +2jivi ėi +v2
i ei =−coiq̇i . (8)

where coi is the ith row of Co . A question arises when the error is small (compared to the
system displacement q), that is, when the non-proportional part Co can be ignored. Shahruz

Figure 1. The ratio of the modal displacements with jk,i = bk,i =1.
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[7, 8] claims that it can be done if and only if the off-diagonal elements of the modal
damping matrix are much smaller than the diagonal ones.

Let us define the factor si as

si = kisi /2jivi , (9)

where

ki =maxk$ i (ki,k ), si = s
k
=coik =

and coik is the kth term of the ith row, coi .
We will show that, for non-clustered natural frequencies and for the case of small

damping, the ith mode error ei is limited as follows

>ei (v)>2

>qi (v)>2
=

>ei (t)>2

>qi (t)>2
Q si�1, (10)

where the 2-norm of q(v) is defined as

>q>2
2 = (1/2p) g

+a

−a

=q(v) =2 dv.

First, we should show that si�1. Indeed, note that the off-diagonal terms of the C matrix
are at most of the order of the diagonal terms. This follows from the property of a
positive-definite matrix C, which relates its off-diagonal and diagonal terms in the
following manner: c2

ij Q ciicjj , for i$ j (see reference [20]). Thus, it follows from equation
(9) that si /2jivi is of order 1. And since ki�1, except for vk,i 2 1 (i.e., when modes are
clustered), it must be that si�1.

Next, we prove that >ei (v)>2/>qi (v)>2 Q si . Rewriting equation (8) in the frequency
domain,

ei (v)=
−jv

v2
i −v2 +2jjiviv

s
k

coikqik (v). (11)

Therefore,

=ei (vi ) ==
1

2jivi b sk coikqik (vi )bE 1
2jivi

s
k

=coikqik (vi ) =. (12a)

By further estimation one arrives at

=ei (vi ) =E
qmax

2jivi
s

k$ i

=coik == qmaxsi

2jivi
, (12b)

where qmax =maxk$ i =qk (vi ) = is the largest modal displacement at frequency vi for k$ i.
However, from equation (5), the largest displacement is expressed in terms of the ith mode
amplitude as

qmax = ki =qpi (vi ) = 2 ki =qi (vi )=, (13)
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where the use of the approximate equality =qpi (vi ) = 2 =qi (vi ) was justified for small si .
Thus, substituting equation (13) into equation (12b) one obtains

=ei (vi ) =
=qi (vi ) =

E kisi

2jivi
= si . (14)

Finally, note (see, for example, references [17] or [21]) that the 2-norms of ei and qi are
proportional to their absolute values at the resonance frequency, i.e., >ei >2 = ai =ei (vi ) = and
>qi >2 = ai =qi (vi ) =, where ai =z0·5jivi . Due to this property one obtains equation (10).
Finally, note that, from the Parseval theorem, the 2-norm also holds in the time domain:
therefore the second condition in equation (10) is satisfied.

The above relationship implies that the ratio of the standard deviations of the error and
of the response is limited by si , and in the case of the white noise input the error does
not exceed the factor si . Since factor si /2jivi is of order 1, the error is negligible if the
factor ki is small, i.e., for almost all vk,i (see Figure 1). The large values of ki are observed
only for the very close natural frequencies. Therefore, for separate natural frequencies the
property (10) demonstrates that the off-diagonal elements of the damping matrix can be
neglected regardless of their values.

4. 

Two examples are presented to illustrate the insignificance of the non-proportional
damping terms and the strength of arguments expressed in the previous sections.

Example 1. Consider a system given by Sharuz [9], which is augmented here with the
full damping matrix. It is represented in a modal form by

8q̈1

q̈2

q̈39+ &0·0434 0·0160 0·0428
0·0160 0·0242 0·0386
0·0428 0·0386 0·0733'8q̇1

q̇2

q̇39+ &4 0 0
0 4·41 0
0 0 9'8q1

q2

q39= 8 1
1·2
2·5 9 1(t),

where 1(t), te 0, denotes the unit step function. The system has the natural frequencies
v1 =2, v2 =2·1, and v3 =3, and the damping ratios j1 =0·011, j2 =0·006 and
j3 =0·012. Its fully populated modal matrix has all terms of the same order.

Figure 2. A histogram of the Euclidean error in the step response of the system in Example 1, for a randomly
generated modal damping matrix.
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Figure 3. A truss structure with concentrated viscous damping.

A comparison between the exact solution and an approximated one, obtained by
ignoring the non-proportional part of modal damping, has been calculated based on the
Euclidean norm of the step response of the first component. For this example, the error
was 4·36%. The distribution of the error for the 3500 samples of a randomly generated
modal damping matrix is shown in Figure 2. The mean value and standard deviation for
the displayed distribution are 6·8% and 0·93%, respectively. The considerably large error
is observed due to the two closely spaced natural frequencies.

Example 2. Consider a flexible truss, presented in Figure 3. For this structure L1 =70 in
and L2 =100 in each link has a cross-section area of 2 in2, the material Young’s modulus
E=1×106 lb/in2, and mass density r=2 lbs2/in2. The system has 13 degrees of freedom.
The structural damping is assumed to be 1% of critical damping and the concentrated
viscous damping in a vertical direction at node 4 is ten times larger than the structural
damping at this location.

The step force input is applied at node 8 and the response vibrations are measured at
node 6 in the vertical direction. A comparison is made between the exact solution (i.e.,
with full damping matrix) and the approximate solution obtained by neglecting modal
coupling in the damping matrix. According to Figure 4, the exact and approximate

Figure 4. The exact and approximate displacement responses measured at node 6 for the truss structure: —,
full damping; –––, proportional damping.
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Figure 5. The approximation error versus the amount of concentrated viscous damping at node 4.

solutions are almost identical; the approximate solution has as much as 0·89% error
compared to the exact one. Let C and Cd denote the full damping matrix and the diagonal
part of the damping matrix, respectively; then the damping matrix diagonality index is
defined as di= >C−Cd >/>Cd >×100% and is equal to 168% in this particular case. The
plot of the approximation error versus viscous damping of the dashpot at node 4 is shown
in Figure 5. Even for the viscous damping of the dashpot 100 times larger than the
structural damping at the node 4, the approximation error does not exceed 3% based on
the Euclidean norm.

5. 

In this letter we show that for flexible structures with small non-proportional damping,
neglecting the off-diagonal terms of the modal damping matrix in most practical cases
imposes negligible errors in the system dynamics. The Shahruz criterion, which allows
neglecting the off-diagonal terms of the modal matrix, was relaxed. The requirement of
the diagonal dominance of the damping matrix is not necessary in the case of small
damping. If the natural frequencies are not clustered, one can ignore the off-diagonal terms
of the damping matrix regardless of their value and introduce negligible error.
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